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Outline
• General considerations for studies of few-

particle transfer reactions in inverse 
kinematics.

• Experimental challenges – what makes 
such studies difficult?

• A possible solution – the solenoid 
alternative.

• Some advantages and disadvantages.



Transfer reactions at RIA
• Single particle structure in exotic nuclei, 

e.g. 1n or 1p states outside a 132Sn core
• Study with single nucleon transfer 

reactions such as (d,p) (1 neutron) or (α,t), 
(3He,d) (1 proton)

• Our poster child will be 132Sn(d,p)133Sn
• But – such transfer reactions on exotic 

nuclei must be performed in inverse 
kinematics…
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θcm vs θlab

Elab vs θlab

d(132Sn,p)133Sn 
kinematics
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θcm vs θlab

Elab vs θlab

α(132Sn,t)133Sb 
kinematics
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How to do this?
• Need good energy resolution and particle 

identification
• dE/dx measurements are not feasible at low 

energies – time of flight?
• Large solid angle is essential (2π hemisphere) 

with relatively small detector
• “Silicon ball” a possibility, but would be complex 

and could have difficulties with low-energy 
particles in a (high?) background environment

• Magnetic spectrograph would provide PID and 
resolution, but possesses small solid angle



The Solenoid alternative
• Use a solenoid to transport particles below a 

given momentum to the axis, where a detector is 
located.

• Use position-sensitive silicon detector: provides 
good energy resolution, and TOF sufficient to 
determine the cyclotron period (∆T~few ns), 
necessary for particle ID.

• Length of the axial detector determines 
fractional momentum bite

• Angle is determined from energy, axial position, 
and TOF information (∆θ ~5-10o)



Schematic design
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Cyclotron period for different particles 
(B=2T)

Particle T(Cyclotron)
p 32.8 ns
d 65.6 ns
t 98.4 ns

3He 49.2 ns
4He 65.6 ns

T(cyc) is independent of 
energy and angle!qB

mcycT π2)( =



Some numbers
For d(132Sn,p)

Proton energy range    1 - 8 MeV
Corresponding to lab angles of      180°-100°

Solenoid (r=25 cm)                ~1-3 T
Detector length             ~ 30 cm

Time of flight                ~ 20-60 ns

For α(132Sn,t)
Triton energies            0.5-5 MeV

Corresponding to lab angles of        80±3°
Solenoid (r=25 cm)                 ~ 1-5 T

Detector length              ~ 25 cm
Time of flight               ~ 20-100 ns



Proton trajectories for d(132Sn,p)133Sng.s.

E(132Sn)=8 MeV/u
B = 2.36 T

Solenoid inner radius = 0.25 m
Solenoid length = 1.50 m
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Transport and “kinematic compression”
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Advantages and disadvantages
Suppression of background
Simple Particle ID
Clarification of kinematics (excited states are 
separated in position as well as energy)
High efficiency (Ω ~ 2π)
Simple detector (few segments) 
Need a large superconducting solenoid (~$500k, 
concerns with large stray fields)
Target, detector, other mechanics more 
challenging



Conclusions
• A large superconducting 

solenoid can be a useful 
tool for studying few-
particle transfer reactions in 
inverse kinematics

• This scheme has a number 
of advantages over more 
conventional methods.

• No significant technical 
obstacles

• Many applications –
transfer reactions, proton 
inelastic scattering…

(Picture from Cryogenic Ltd. UK)
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Real states in 133Sn
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Why it works…
Vz=V cosθcm

Vt=V sinθcm

V~(Ec.m.+ Q - Ex)1/2Vz

θcm

V
Vt Center of mass

Vzlab=Vz+VCM

Vtlab=Vt

Elab~Vlab
2=V2+VCM

2+2VzVCMVzlab

θlab

Vlab Vt
Laboratory

Since: T=Tcyc, if two groups arrive at the same Z, 
then Vzlab1=Vzlab2 and VZ2=VZ1

∆Elab~V2lab
2-V1lab

2=(V2
2+VCM

2+2VZ2VCM)-(V1
2+VCM

2+2VZ1VCM)
=(V2

2-V1
2) + 2VCM(VZ2-VZ1) 

But Vz2=Vz1! So:       ∆Elab=V2
2-V1

2 ~ EX1-EX2!



First (d,p) reaction
I can find in Phys. Rev.,
40Ar(d,p)41Ar
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